

Chapter 2.4

Resistive Circuits
Voltage and Current Division

Engr228-Circuit Analysis
Spring 2020

Dr Curtis Nelson

Section 2.4 Objective

- Understand voltage and current division.

Kirchhoff's Current Law

- Kirchhoff's Current Law (KCL) states that the algebraic sum of all currents entering a node is zero.

$$
i_{A}+i_{B}+\left(-i_{C}\right)+\left(-i_{D}\right)=0
$$

Kirchhoff's Voltage Law

- Kirchhoff's Voltage Law (KVL) states that the algebraic sum of the voltages around any closed path is zero.

$$
-v_{1}+v_{2}+-v_{3}=0
$$

Measuring Voltage, Current, and Resistance

- An ideal meter has no effect on the circuit variable being measured.
- That means when an ideal ammeter is placed in series to measure the current through an element, it should have an equivalent resistance of 0Ω.
- That means when an ideal voltmeter is placed in parallel to measure the voltage across an element, it should have an equivalent resistance of $\infty \Omega$.

Series Connections

- Elements connected head-to-tail and carrying the same current are said to be connected in series.

Resistors in Series

Voltage Division

Resistors in series "share" the voltage applied to them.

$$
v=v_{1}+v_{2}
$$

$$
=i\left(R_{1}+R_{2}\right)
$$

$$
\begin{gathered}
v_{2}=i R_{2}=\left(\frac{v}{R_{1}+R_{2}}\right) R_{2} \\
v_{2}=\frac{R_{2}}{R_{1}+R_{2}} v
\end{gathered}
$$

Voltage Divider Example

Calculate V_{1} using the voltage divider equation.

$$
V_{1}=4.00 \mathrm{~V}
$$

Textbook Problem 3.12 (Nilsson $10^{\text {th }}$)

Find the voltage v_{0} and the power dissipated in both resistors.

$$
\begin{aligned}
& v_{0}=66 \mathrm{~V} \\
& P_{R 1}=1.88 \mathrm{~W} \\
& P_{R 2}=1.32 \mathrm{~W}
\end{aligned}
$$

Parallel Connections

- Elements in a circuit connected head-to-head and tail-to-tail have a common voltage across them and are said to be connected in parallel.

Resistors in Parallel

(a)

$$
\begin{gathered}
i_{s}=i_{1}+i_{2}+\cdots+i_{N} \\
i_{S}=\frac{v}{R_{1}}+\frac{v}{R_{2}}+\cdots+\frac{v}{R_{N}}=\frac{v}{R_{\mathrm{eq}}}
\end{gathered}
$$

(b)

Two Resistors in Parallel

$$
\begin{aligned}
R_{\mathrm{eq}} & =R_{1} \| R_{2} \\
& =\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}}
\end{aligned}
$$

$$
R_{\mathrm{eq}}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

Connecting resistors in parallel makes the equivalent resistance smaller. Always.

Current Division

Resistors in parallel "share" the current through them.

$$
\begin{aligned}
i_{2} & =\frac{v}{R_{2}} \\
& =\frac{i\left(R_{1} \| R_{2}\right)}{R_{2}} \\
& =\frac{i}{R_{2}} \frac{R_{1} R_{2}}{R_{1}+R_{2}}
\end{aligned}
$$

$$
i_{2}=i \frac{R_{1}}{R_{1}+R_{2}}
$$

Current Divider Example

Calculate the current in the two resistors below using the current divider equation.

$$
\begin{aligned}
& i_{2 K}=0.667 \mathrm{~mA} \\
& i_{4 K}=0.333 \mathrm{~mA}
\end{aligned}
$$

Textbook Problem 3.2d (Nilsson 11 $^{\text {th }}$)

Compute the equivalent resistance seen by the 30 mA source.

(d)

Answer: $R=120 \Omega$

Textbook Problem 3.19 (Nilsson 11 ${ }^{\text {th }}$)

For the current divider shown below, calculate i_{0} and v_{0}.

Answer: $i_{0}=0.16 \mathrm{~A}$ and $v_{0}=16 \mathrm{~V}$

Section 2.4 Summary

- You learned how to recognize and apply the laws of voltage and current division.

